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Abstract

LivDet-Iris 2025 is the sixth edition of the iris liveness
detection competition. Held every two to three years, the
competition aims to foster the development of robust al-
gorithms capable of detecting a wide range of physically-
and digitally-presented attacks in iris biometrics. The 2025
edition obtained the largest number of submissions in the
history of the competition: ten algorithms from five institu-
tions, and one commercial iris recognition system. LivDet-
Iris 2025 also introduced new tasks compared to previ-
ous editions: (Task 1) a benchmark offered by an indus-
try partner, (Task 2) morphed iris images, in which two
different-identity samples were blended into one image, and
(Task 3) evaluation of presentation attack detection robust-
ness against advanced manufacturing techniques for tex-
tured contact lenses. This edition, for the first time in the se-
ries, offers a systematic testing of a commercial iris recog-
nition system (software and hardware) using physical arti-
facts presented to the sensor. Dermalog-Iris team submit-
ted algorithms that won all tasks, achieving the area un-
der the ROC curve of 90.57%, 68.23% and 99.99% in tasks
1, 2, and 3, respectively. Additionally, we include results
for baseline algorithms, based on modern deep convolu-

tional neural networks and trained with all available pub-
lic datasets of iris images representing bona fide samples
and anomalies (physical attacks, eye diseases, post-mortem
cases, and synthetically-generated iris images). Test sam-
ples created for tasks 2 and 3, and baseline models are
made available to offer the state-of-the-art benchmark for
iris liveness detection.

1. Introduction
LivDet-Iris 2025 is the sixth edition of the iris liveness

detection competition in the LivDet-Iris series, and included
in the official IJCB 2025 competition list1. Similar to pre-
vious competitions, this edition has two parts:

• Part 1 (Algorithms), which involves the evaluation of the
software solutions (submitted to the organizers) in three
tasks, in which large datasets of iris images representing
bona fide samples and various anomalies were used, and

• Part 2 (Systems), which involves the systematic testing
of submitted iris recognition systems based on physical
artifacts presented to the sensors by laboratory staff.

1https://ijcb2025.ieee-biometrics.org/competitions/
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The three tasks in Part 1 introduce novel (compared to
past LivDet-Iris editions) ways of testing algorithms:

• Task 1: Industry Partner’s Tests – The industry partner,
PayEye Poland, Poland, evaluated all submissions using a
sequestered dataset that reflects the most prevalent physi-
cal attacks observed in real-world iris recognition-based
payment services. The presentation attack instruments
(PAIs) included in this task are paper printouts, irises dis-
played on an e-book reader, artificial eyes, doll eyes, man-
nequin eyes, as well as samples synthesized using Gener-
ative Adversarial Networks (GANs).

• Task 2: Deep Learning-Aided Iris Morphing – In this
task, submissions were tested against morphed iris sam-
ples, prepared by compositing two iris images represent-
ing two identities, with the seams caused by the composit-
ing process “smoothed” by a diffusion model to increase
the visual realism.

• Task 3: Robustness to Advanced Textured Contact
Lens (TCL) Manufacturing – This task focused on ro-
bustness of liveness detection methods against modern
manufacturing techniques used to produce TCL, includ-
ing high-resolution printing, multi-layered designs, and
improved pigmentation. Such new techniques make TCLs
increasingly indistinguishable from bona fide irises. As
many existing liveness detection models are trained on
older TCL datasets, this task assessed the community’s
readiness in detecting new TCL brands and production
techniques.

Competitors had the option of participating in one or
both parts of the competition, and any (or all) tasks in Part
1 (Algorithms). In this edition of LivDet-Iris, we received
9 submissions from 5 research teams for Tasks 1, 6 submis-
sions from 3 research teams for Task 2, and 10 submissions
from 5 research teams for Task 3. This year also marks
the first-ever submission to Part 2 (Systems) challenge. The
Area Under the Receiver Operating Curve (AUROC) ob-
tained on the test sets was used as a metric to determine
the winner. The Dermalog-Iris team’s submission 001 wins
in all three tasks in Part 1, obtaining AUROC of 90.57%,
68.23% and 99.99% in Tasks 1, 2 and 3, respectively. These
results demonstrate (a) a good readiness of the community
to react to new types of textured contact lenses, (b) rela-
tively good performance in the task, which used unknown
and operational-type spoofs, and (c) challenges with detect-
ing visually-appealing morphed iris images, blending two
real identities into a composite iris image. Due to only one
submission to Part 2, this part does not have a winner, but
the evaluation results are presented in this paper.

Baseline models and codes, as well as instructions on
how to request a copy of test datasets used in Tasks 2
and 3 are available at https://github.com/CVRL/

livdet-iris-2025 to offer the latest LivDet-Iris
benchmark.

2. Previous LivDet-Iris Competitions

Over the years, the LivDet-Iris competitions have
evolved significantly in both scope and complexity. The
2013 edition [35] followed a closed-set scenario, where the
types of presentation attacks in the test set were the same as
those seen during training, although the images themselves
were different. In the 2015 edition [36], the focus shifted
to detecting contact lenses, introducing samples from var-
ious contact brands. The 2017 competition [33] increased
the challenge by incorporating sensor variability, using iris
images captured with different devices. The 2020 edition
[5] introduced an open-set scenario and several novel attack
types, including post-mortem, e-book-displayed, artificial,
and printed irises.

Most recently, the 2023 competition [28] featured syn-
thetic iris images generated using a StyleGAN model, in-
cluding samples representing low and high fidelity of syn-
thesized images, as well as a human subject study, in which
humans were asked to detect presentation attacks.

3. Experimental Setup

3.1. Submission Protocol

Participants in Part 1 were asked to submit a Python im-
plementation of their algorithm to the organizers. The pro-
gram was required to accept two input arguments: the path
to the input CSV file (specifying test samples) and the path
to the output CSV file (containing the algorithm’s results on
the test data).

The organizers provided a mock-up Python implementa-
tion2, which standardized the interface between competitors
and organizers and simplified the evaluations. Each sub-
mission was evaluated by the organizer responsible for the
specific task, who locally executed the provided code on the
task-specific test dataset.

3.2. Competition Datasets

3.2.1 Train Data and Instructional

As in the previous edition of the LivDet-Iris competitions,
the organizers did not provide training data. Participants
were allowed to use their own datasets or any publicly avail-
able datasets to train their best PAD algorithms with a vari-
ety of presentation attack (PA) types and bona fide samples
of their choice. The organizers provided only a single sam-
ple for each task in Part 1 to inform the participants on the
image format of samples used in evaluations.

2Available in the LivDet-Iris 2025 repository https://github.
com/CVRL/livdet-iris-2025 in “Submission-Instructions” folder



3.2.2 Part 1 Test Data

All test images are provided as 8-bit grayscale PNG files
with a resolution of 640 × 480 pixels. Each pixel is a sin-
gle grayscale value, where 0 corresponds to black and 255
to white. Images of authentic irises conform to the IM-
AGE TYPE VGA format, as defined in ISO/IEC 19794-
6:2011. However, similar conformance is not guaranteed
for spoof samples. Below we discuss datasets used in each
task in Part 1 of the competition.

Task 1 Test Data The dataset comprises a total of 37,845
samples, with 21,570 samples (∼ 56.9%) labeled as presen-
tation attack, and 16,275 samples (∼ 43.0%) labeled as bona
fide. The dataset includes six types of presentation attacks:
synthetic samples (generated using GANs and further en-
hanced via high-quality restoration techniques in a 50:50
ratio), images displayed on Kindle screens, textured contact
lenses, mannequin eyes, artificial plastic eyes, and printed
iris images. The bona fide samples exhibit a broad range of
natural variation to reflect realistic operational conditions.
They were captured under diverse lighting environments,
resulting in varying illumination and shadow effects. Some
subjects wear eyeglasses, which may introduce reflections
partially covering the iris region. Additionally, the presence
of makeup, ranging from light to heavy, can, in some cases,
obscure parts of the iris texture. However, all bona fide sam-
ples are of sufficient quality to be used in iris matching.

Task 2 Test Data The dataset comprises a total of 3,603
samples, with 1,385 (∼ 38.4%) bona fide samples and 2,218
(∼ 61.6%) morphed iris samples. Bona fide samples were
selected as all original samples used to produce morph sam-
ples. To ensure the generation of novel identities through
morphing, we splice iris textures from two distinct subjects
by taking the inner iris band (closer to the pupil) from one
identity and the outer band (near the limbus) from another
one. Then, we evaluate the synthetic sample’s identity prox-
imity using HDBIF [3] distance, selecting the sample that
minimizes the absolute difference to the two source identi-
ties.

The above splicing process introduces unnatural seams
that must be corrected. We trained a diffusion model
to “inpaint” regions of iris images located at the seams.
Specifically, to train the diffusion model random concen-
tric band-shaped regions are replaced with noise and the
network is trained to replace these regions following a dif-
fusion “inpainting” framework similar to that proposed in
Palette by Saharia et al. [25]. Unlike traditional diffusion
pipelines (and Palette) that only utilize the Mean Squared
Error (MSE) loss, our loss function combines a pixel-wise
MSE term with perceptual similarity components (Learned
Perceptual Image Patch Similarity – LPIPS, and Multi-

Scale Structural Similarity – MS-SSIM) to improve high-
frequency texture fidelity. Finally, to eliminate boundary
artifacts from splicing, we replace the seam with a band of
noise and “inpaint” it using our trained diffusion model, cre-
ating a perceptually coherent iris image of a “mixed” iden-
tity.

Task 3 Test Data The dataset comprises 564 bona fide
iris images and 788 samples captured from subjects wear-
ing textured contact lenses. The presentation attack samples
represent nine different contact lens, and are categorized
into two quality classes: High Quality and Pixelated. 644
high-quality lenses originate from six different contact lens,
while 144 pixelated samples originate from three other con-
tact lens. For algorithm testing, we used at least 500 bona
fide and 500 presentation attack images to ensure balanced
evaluation.

Fig.1 shows sample images from Task 2 and Task 3 that
were used by the organizers to evaluate the submitted al-
gorithms. Task 1 samples, originating from a commercial
co-organizer, are not being released.

(a) Task 2: Morphed sample (b) Task 3: Bona fide

(c) Task 3: Pixelated (d) Task 3: High quality

Figure 1: Example of cropped images from Task 2 (iris mor-
phing) and Task 3 (bona fide, pixelated and high quality tex-
tured contact lens) used in the evaluation of the submitted
algorithms.



3.2.3 Part 2 Test Data

In Part 2, system-level PAD performance is evaluated
through laboratory-conducted spoofing attempts, with ven-
dors indicating whether they support PAD and optionally
providing liveness scores. The evaluation includes 500
bona fide and 500 spoof attempts, with bona fide samples
acquired according to NIST IREX-V [24] and ISO/IEC
19794-6 [13] guidelines. Spoof attempts are designed to
trigger iris image capture using 166 printed iris images, 166
iris images displayed on a Kindle device, and 168 attempts
involving a live person wearing various types of textured
contact lenses. Non-responses to spoof attempts are con-
sidered correct rejections, whereas failures to capture bona
fide iris samples are treated as failures to acquire and are
factored into the final system ranking.

3.3. Performance Evaluation Metrics

In Part 1, algorithm performance is measured using
the Attack Presentation Classification Error Rate (APCER)
and the Bonafide Presentation Classification Error Rate
(BPCER), as recommended by ISO/IEC 30107-1:2017
[14]. Both APCER and BPCER are calculated at a fixed
acceptance threshold of 0.5 to evaluate the generalization
capability of the implementation without threshold tuning.
Additionally, the Area Under the Receiver Operating Char-
acteristic curve (AUROC) is computed using APCER and
1 − BPCER scores. The closer the AUROC is to 1.0, the
better the algorithm.

In Part 2, system performance is evaluated using
APCER and BPCER. Both metrics are calculated based on
a fixed acceptance threshold provided by the team that sub-
mitted the system. A lower combined value of APCER and
BPCER indicates better overall performance. All samples
that are not processed (crashed, skipped, null response) con-
tribute towards a Non-Response Rate (NRR):

NRR =
Total Number of Non-Responses

Total Number of Samples Evaluated

3.4. Winner Selection

Since the three tasks in Part 1 (Algorithms) are distinct,
we allowed each task to have its own winner based on the
highest AUROC score in a given task.

The winner of Part 2 (Systems) will be the one with the
lowest combined BPCER and APCER.

4. Submitted Algorithms
4.1. Team: BUCEA

Method The BUCEA team submitted two algorithms:
AMF-IPAD for both Task 1 and Task 3, and SSDG exclu-
sively for Task 3. AMF-IPAD is an attention-assisted mul-
tilevel fusion framework for iris liveness detection. It uses

an iris-mask-guided attention module to separately extract
ocular features for global attacks and iris features for local
attacks. The model integrates complementary information
at the image, feature, and score levels using a multilevel
fusion strategy. Input images are formed by concatenat-
ing CLAHE-enhanced, HOG-extracted, and raw grayscale
versions into a three-channel input, which is processed
through a shared ResNet18 backbone split into ocular and
iris branches. Both branches share architecture and weights,
but focus on different regions, with the iris branch capturing
finegrained features crucial for liveness detection. A multi-
head attention module adaptively fuses features from both
branches. The model was trained using data augmentation,
Adam optimization, and a weighted joint loss combining
pixel-level supervision and self-distillation. Final predic-
tions were made by aggregating weighted outputs from the
ocular, iris, and fused branches. Single-Side Domain Gen-
eralization (SSDG) framework was initially developed as
an end-to-end approach for face anti-spoofing [16] and has
been adapted to enhance the cross-domain generalization
ability of textured contact lens detection.

Training Data For Task 1, the dataset used for training
and validation comprises 132,944 images (56,436 bonafide
and 76,508 attack samples), and combines open-sourced
datasets, such as: LivDet-Iris 2017, NDCLD’15, IIITD
Contact Lens Iris, ND CrossSensor-Iris-2013, and BUCEA
team’s self-collected print dataset and self-generated syn-
thetic images based on StyleGAN2 and StyleGAN3. The
dataset contains many types of attacks, such as contact
lenses, paper printouts, synthetic samples, and doll eyes.
For Task 3, the dataset used for training and validation
consists of 84,876 images (47,495 bonafide and 37,381 at-
tack samples), and combines open-sourced datasets, such
as: LivDet-Iris 2017, NDCLD’13, IIITD Contact Lens Iris,
IFVEAI1000, CASIAH100. The dataset contains various
textured contact lens patterns.

4.2. Team: Dermalog-Iris

Method The proposed algorithm employs three separate
neural networks to detect paper printouts, patterned contact
lenses, and morphing attacks. Each network was trained in-
dependently using overlapping image patches. While many
existing approaches use a single classifier to detect multi-
ple types of presentation attacks, this method combines the
outputs of three independently trained classifiers. A key as-
pect of this approach is the decomposition of iris images
into overlapping patches, which helps mitigate the limita-
tions posed by small training datasets. For each image, the
patch-level predictions were aggregated to produce a final
classification. These results from the three networks were
then fused to compute a final liveness score. The contact
lens detection network takes nine patches derived from the
normalized (rubbersheet) iris image, whereas the print-out



and morph detection networks each process nine patches
extracted from the full eye image.

Training Data The dataset used for training and valida-
tion comprises both publicly available datasets and pro-
prietary Dermalog datasets, which include paper printouts,
patterned contact lenses, and morphed iris images. Specif-
ically, the LivDet-Iris 2023 competition database, along
with its complementary images, was employed. In addi-
tion, three internal Dermalog databases containing diverse
iris image samples were utilized to enhance variability and
robustness. In total, approximately 130,000 near-infrared
iris images were used for training purposes.

4.3. Team: EyeFortress (EF)

Method The EF developed four PAD algorithms based on
advanced image classification architectures. The first model
used ResNet50 backbone with a simple two-class linear
classifier. The second model leveraged the DINOv2 frame-
work with a ViT-14 backbone and a non-linear classifier.
The third model used a learned ensemble of four pre-trained
networks (ResNet50, DenseNet121, DINO-ResNet50, and
DINOv2-ViT14), feeding normalized spoof probabilities
into a lightweight MLP for final prediction. The fourth
model enhanced the latter one with a dynamic ensemble us-
ing attention to weight each network’s output. For all mod-
els, the images were augmented with random flips, ±10°
rotations, and affine shifts, then resized and normalized us-
ing ImageNet statistics. The models were fine-tuned from
ImageNet-1K weights for 50 epochs, with softmax score
used to predict the liveness.

Training Data The data set used for training and vali-
dation comprised samples from Clarkson databases from
2013, 2015, 2017, and 2023, as well as the NDCLD
databases from 2013, 2015, and 2017, and the IIIT WVU
database, as well as a high-quality dataset collected by the
EF team, consisting of 336 bona fide iris images and 1,072
E-display iris images captured using mobile cameras.

4.4. Team: HDA

Method The HDA team developed an algorithm based on
LoRA fine-tuning of a CLIP base model from [27]. On
top of the CLIP model, a single neuron layer was also op-
timized for binary classification. The input images were
transformed according to CLIP transformations of RGB im-
ages (in this case, the grayscale NIR image was repeated
into each RGB channel) and resized to 224 × 224 pixels.
The model was optimized using LoRA for 50 epochs and
the results were computed with the model that obtained the
best validation results (after 38 epochs).

Training Data The dataset used for training and valida-
tion comprises five PAs such as: paper printouts, patterned
contact lenses, cadaver irises, synthetic irises, and morphed

samples, plus bona fide iris samples. Some of these images
are from LivDet-Iris 2020 benchmark. In total, 70,000 im-
ages were used, evenly distributed across classes.

4.5. Team: MSU

Method The MSU team submitted two algorithms, D-
NetPAD [26] and SPAD [23], both of which use DenseNet-
121 [11] as the backbone. In both approaches, segmented
iris images are resized to 224 × 224 pixels before being fed
into the network. For D-NetPAD, the iris region was ex-
tracted using the VeriEye detector3 during training, while
the Iris-SAM segmenter [7] was used for the evaluation
tasks conducted by the organizers. Iris-SAM was guided by
the bounding boxes generated by YOLOv84, finetuned us-
ing the Clarkson dataset [34]. D-NetPAD model was trained
using stochastic gradient descent (SGD) with a momentum
of 0.9, a learning rate of 0.005, a batch size of 20, and cross-
entropy loss over 50 epochs. SPAD followed a similar pre-
processing pipeline, using Iris-SAM for segmentation, fol-
lowed by cropping and resizing. It was adapted for binary
classification by replacing the final DenseNet layer with
a sigmoid output. SPAD was fine-tuned using the Adam
optimizer with a learning rate of 0.0001 and binary cross-
entropy loss for 50 epochs. The dataset was split 80:20 for
training and validation, and the best-performing model was
selected based on the lowest validation loss.
Training Data D-NetPAD was trained on a proprietary
dataset comprising 13,851 iris images [26], including 9,660
bona fide samples and 4,291 presentation attacks such
as printed images, artificial eyes, textured contact lenses,
Kindle-displayed samples, and transparent domes placed
over printed eyes. SPAD was trained on the publicly avail-
able LivDet-Iris 2017 (excluding the unknown test subset)
[34] and LivDet-Iris 2020 [4] datasets, using both training
and test partitions.

5. Baseline Algorithms
5.1. Architectures

To train baseline algorithms, we selected ResNet101
[10], DenseNet121 [11], and Visual Transformer (ViT-
B/16) [6] architectures, as they demonstrated the highest
performance in the LivDet-Iris 2023 competition [29].

5.2. Training

The baselines were trained under two different scenarios:
(1) using only authentic bona fide and attack samples, along
with inpainting-based synthetic images, and (2) additionally
incorporating synthetically generated attack samples pro-
duced using StyleGAN2-ADA [18] and the Improved De-
noising Diffusion Probabilistic Model (IDDPM) [22]. Fig.

3https://www.neurotechnology.com/verieye.html
4https://github.com/ultralytics/ultralytics



2 presents example images that were used for training the
baseline models.

Table 1 summarizes the datasets used to train the base-
line models. We allocated 80% of each dataset for train-
ing and the remaining 20% for validation during model de-
velopment. Each model was trained for 50 epochs with a
batch size of 32. Cross-entropy loss and the SGD optimizer
were applied consistently across all models. The training
was conducted using cropped iris images, with a 16-pixel
padding around the iris region. We applied a range of stan-
dard augmentation techniques adopted from [17], including
affine transformations, random horizontal flipping, sharpen-
ing, blurring, contrast and brightness adjustments, and the
addition of Laplace-distributed noise.

Image Type Contributing Dataset # of Samples Total #
of Samples

Bona fide

ATVS-FIr [8]
BERC IRIS FAKE [21]

CASIA-Iris-Thousand [12]
CASIA-Iris-Twins [12]

Disease-Iris v2.1 [30] [30]
IIITD Combined Spoofing Database [20]

IIITD Contact Lens Iris [19]
LivDet-Iris Clarkson 2015 [36]

LivDet-Iris IIITD-WVU 2017 [33]
LivDet-Iris Warsaw 2017 [33]
LivDet-Iris Warsaw 2015 [36]
LivDet-Iris Clarkson 2017 [33]

LivDet-Iris 2020 [4]
Notre Dame (internal)

800
2,776
19,952
3,181
1,438
4,531

13
813

2,944
5,167

36
3,949
5,331

354,236

405,167

Artificial
BERC IRIS FAKE [21]

LivDet-Iris 2020 [4]
Notre Dame (internal)

80
526
197

803

Textured contact lenses

BERC IRIS FAKE [21]
IIITD Contact Lens Iris [19]

LivDet-Iris Clarkson 2015 [36]
LivDet-Iris Clarkson 2017 [33]

LivDet-Iris IIITD-WVU 2017 [33]
Notre Dame (internal)

140
3,420
1,107
1,881
1,700
19,124

31,708

Post-mortem
Post-Mortem-Iris v3.0 [31]

NIJ [2]
4,866
5,770 10,636

Paper printouts

ATVS-FIr [8]
BERC IRIS FAKE [21]

IIITD Combined Spoofing Database [20]
LivDet-Iris Clarkson 2015 [36]

LivDet-Iris IIITD-WVU 2017 [33]
LivDet-Iris Warsaw 2017 [33]
LivDet-Iris Warsaw 2015 [36]
LivDet-Iris Clarkson 2017 [33]

LivDet-Iris 2020 [4]
Notre Dame (internal)

800
1,600
1,371
1,745
1,766
6,841

20
2,250
1,049
2,151

19,593

Displayed on e-ink device
LivDet-Iris 2020 [4]

Notre Dame
81

2,066 2,147

Synthetic CASIA-Iris-Syn V4 [32] 10,000 10,000

Synthetic GenAI
IDDPM (Notre Dame internal)

StyleGAN (Notre Dame internal)
9,638
10,005 19,643

All combined 471,677
(491,320)∗

∗including samples generated by StyleGAN and IDDPM

Table 1: Numbers and sources of iris images used to train
baseline models.

6. Results and Competition Winners
Figure 3 shows the ROC curves for Part 1, Tasks 1–3, high-
lighting the best-performing algorithms for both the base-
line and the submitted algorithms. Detailed results for these
tasks are provided in Tables 2, 3, and 5, respectively. The

results for Part 2 are summarized in Table 4.

6.1. Part 1 (Algorithm)

The Dermalog-Iris team delivered the top-performing
algorithm across all three tasks in Part 1 of LivDet-Iris
2025. In Task 1 (Industry Partner’s Tests), their algorithm
reached an AUROC of 0.9057, in Task 2 (Deep Learning-
Aided Iris Morphing), an AUROC of 0.6823, and in Task 3
(Advanced Textured Contact Lens), an AUROC of 0.9999.
Below we offer more detailed comments related to the ob-
served performance in all three tasks.

Task 1 (Industry Partner’s Tests) Although the
Dermalog-Iris team achieved the highest AUROC for this
task, the MSU team’s D-NetPAD algorithm demonstrated
the lowest (best) APCER of 0.0644 at a threshold value
of 0.5 among all submissions. Meanwhile, the HDA team
achieved the lowest (best) BPCER of 0.0474 among all
submissions. These results suggest that MSU’s D-NetPAD
performed particularly well against the attack types intro-
duced by the industry, while the HDA team’s algorithm
demonstrated higher accuracy in identifying only bona
fide irises (see Table 2). As illustrated in Figure 3, several
algorithms still struggled with a task involving bona fide
iris samples and attacks collected in a real-world setup
including diverse and unknown acquisition conditions.

Team Algorithm AUROC ↑ APCER ↓ BPCER ↓
@0.5 thr. @0.5 thr.

Baseline ResNet 0.8242 0.3003 0.0224
DenseNet 0.8204 0.3082 0.0344

ViT 0.8450 0.2894 0.0245

Baseline ResNet 0.8448 0.2910 0.0214
+ synthetic DenseNet 0.8172 0.3066 0.0305

training samples ViT 0.8648 0.2947 0.0262

BUCEA 001 0.8984 0.1129 0.3294

Dermalog-Iris 001 0.9057 0.1069 0.2826

EyeFortress (EF) 001 0.6590 0.1519 0.8490
002 0.6222 0.1887 0.8928
003 0.6545 0.1202 0.9332
004 0.6827 0.1662 0.8706

hda team hda teamV1 0.5692 0.8829 0.0474

MSU D-NetPAD 0.9014 0.0644 0.4033
SPAD 0.8043 0.2538 0.2762

Table 2: Results for Part 1, Task 1 (Industry Partner’s Tests).
For each metric, the best-scoring competitor algorithm and
best-scoring baseline algorithm are bolded. The algorithm
Dermalog-Iris 001 wins Task 1 for achieving the greatest
AUROC among competitors.

Task 2 (Deep Learning-Aided Iris Morphing) Only
three of the five teams chose to participate in this task.
While the Dermalog-Iris team achieved the highest AUROC
and was declared the winner, the HDA team’s algorithm



(a) Bona fide (b) Printout (c) Artificial (d) Kindle (e) Post-mortem (f) TCL (g) Synthetic

Figure 2: Example of a bona fide iris image (a) and all presentation attacks used in the training of baseline models (b-g).
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Figure 3: ROC curves for Part 1, Tasks 1-3. For each task, the winning algorithm (Dermalog-Iris) is plotted with a bold
line. All baseline algorithms are plotted with transparent dashed lines. For Task 3, APCER is plotted at log-scale to better
illustrate differences between algorithms.

recorded the lowest (best) APCER of 0.4292 at a thresh-
old of 0.5, and Dermalog-Iris achieved the lowest (best)
BPCER at 0.0051 (see Table 3). The lower AUROC values
as shown in Figure 3 show that submitted PAD algorithms
had difficulty in accurately identifying morphed samples as
presentation attacks, what highlighting a significant chal-
lenge posed by this type of spoofing.

Team Algorithm AUROC ↑ APCER ↓ BPCER ↓
@0.5 thr. @0.5 thr.

Baseline ResNet 0.6666 0.9946 0.0000
DenseNet 0.6460 0.9950 0.0000

ViT 0.6853 0.9775 0.0000

Baseline ResNet 0.6306 0.9959 0.0000
+ synthetic DenseNet 0.6836 0.9959 0.0000

training samples ViT 0.6833 0.9648 0.0000

Dermalog-Iris 001 0.6823 0.9058 0.0051

EyeFortress (EF) 001 0.6044 0.7759 0.1040
002 0.6473 0.7606 0.0866
003 0.5686 0.9125 0.0729
004 0.6410 0.8300 0.0556

hda team hda teamV1 0.5230 0.4292 0.5227

Table 3: Results for Part 1, Task 2 (Deep Learning-Aided
Iris Morphing). For each metric, the best-scoring com-
petitor algorithm and best-scoring baseline algorithm are
bolded. The algorithm Dermalog-Iris 001 wins Task 2 for
achieving the greatest AUROC among competitors.

Task 3 (Robustness to Advanced Textured Contact Lens
Manufacturing) In this task, again the Dermalog-Iris al-
gorithm obtained the lowest AUROC and was declared the
winner. With the exception of the HDA team (0.7731)
and MSU’s D-NetPAD algorithm (0.9645), all submissions
achieved an AUROC above 0.99. The highest (worst)
APCER was detected for HDA algorithm and the highest
(worst) BPCER was found for the EF team’s second algo-
rithm (see Table 5). Despite advances in technology and
texture realism by contact lens manufacturers, these results
indicate that textured contact lenses are an easily detectable
presentation attack by modern iris PAD algorithms. See-
ing the results in Task 3, we may conclude that detecting
textured contact lenses, even those manufactured recently,
appears to be a solved problem in iris PAD.

6.2. Part 2 (Systems)

Dermalog-Iris was the only team that participated in Part 2
(Systems). Here, they achieved an APCER of 0.0000 for
both printed and kindle irises, and an APCER of 0.1310 for
irises with TCL with a total BPCER of 0.0000. Combined
APCER + BPCER of 0.1310 at the acceptance threshold
suggested by the manufacturer (80). Table 4 presents the
results of Task 3.

For attack samples, approximately 66% could not be pro-
cessed by the device and were automatically considered at-
tacks. In contrast, the NRR for bona fide samples was 0.00,



APCER↓ APCER↓ APCER↓ BPCER↓ APCER + BPCER↓ NRR NRR
@80 thr. @80 thr. @80 thr. @80 thr. @80 thr. attacks only bona fide only

(Printed Image) (Kindle Display) (Textured Lens)

0.0000 0.0000 0.1310 0.0000 0.1310 0.6640 0.0000

Table 4: Results for Part 2 (Systems) for the only system submitted to this part (Dermalog-Iris).

Team Algorithm AUROC ↑ APCER ↓ BPCER ↓
@0.5 thr. @0.5 thr.

Baseline ResNet 1.000 0.0110 0.0000
DenseNet 1.000 0.0165 0.0000

ViT 1.000 0.0147 0.0000

Baseline ResNet 0.9963 0.0147 0.0000
+ synthetic DenseNet 0.9999 0.0000 0.0000

training samples ViT 0.9999 0.0000 0.0000

BUCEA 001 0.9974 0.0110 0.0000
002 0.9991 0.1121 0.0000

Dermalog-Iris 001 0.9999 0.0110 0.0020

EyeFortress (EF) 001 0.9971 0.0000 0.0620
002 0.9989 0.0000 0.1040
003 0.9989 0.0000 0.0400
004 0.9998 0.0000 0.0140

hda team hda teamV1 0.7731 0.5551 0.0920

MSU D-NetPAD 0.9645 0.1618 0.0760
SPAD 0.9979 0.1599 0.0000

Table 5: Results for Part 1, Task 3 (Robustness of PAD
to Advanced Manufacturing Methods of Textured Contact
Lens Patterns). For each metric, the best-scoring competitor
algorithm and best-scoring baseline algorithm are bolded.
The algorithm Dermalog-Iris 001 wins Task 3 for achieving
the greatest AUROC among competitors.

indicating that all bona fide samples were successfully pro-
cessed.

7. Conclusions and Discussion

This edition of the LivDet-Iris competition received sub-
missions from five teams. Out of these, one algorithm chose
not to participate in Task 1 of Part 1, which was evaluated
by the industry partner PayEye Poland and two teams (4
algorithms) chose not to participate in Task 2 of Part 1,
which focused on iris morphing. The Dermalog-Iris team
was identified as the winner of Part 1, achieving the highest
AUROC across all three tasks. However, relying only on
AUROC as a metric in biometric tasks—such as PAD—has
certain limitations [15].

Competitors’ performance across the three tasks of Part
1 suggest strengths and weaknesses of modern iris PAD al-
gorithms. Task 1 results indicate that submitted PAD mod-
els still struggle under real-world iris PA conditions. The
samples, collected by the industry partner PayEye Poland,
reflect realistic operational environments, with natural vari-

ations in lighting, shadows, eyeglasses, and makeup that
can partially obscure the iris region, making classification
and PAD tasks more challenging. The morphed attacks of
Task 2 were consistently difficult, and high APCER val-
ues show that most algorithms failed to detect morphed iris
images. The low performance indicates weakness in rec-
ognizing digitally-presented iris attacks, which may be at-
tributed to both the novelty of the PA as well as traditional
training data bias towards physically-presented PAs. Con-
versely, Task 3 results suggest that PAD models are effective
at detecting textured contact lenses, despite advanced man-
ufacturing techniques mimicking human iris texture. Ad-
ditionally, comparing baselines results for Part 1 with the
results of submitted algorithms indicated that some of these
algorithms outperformed the baselines. Also, adding syn-
thetically generated samples using StyleGAN and diffusion
models did not appear to improve baseline performance (see
ROC curves shown in Figure 3). These observations sug-
gest that, when dealing with unseen attacks or real-world
iris presentation attack samples, PAD algorithms struggle
to accurately label samples, regardless of their type or the
amount of training data used. Dermalog-Iris submitted the
only algorithm for Part 2, Systems, which involved test-
ing models using physical artifacts presented to the sen-
sors, demonstrated strong performance on both bona fide
and presentation attack samples.

LivDet-Iris 2025, in addition to the results compiled in
this paper, open-sources all baseline algorithms, and re-
leases Task 2 and Task 3 test datasets to serve as the most
recent benchmark in iris PAD evaluation.

Note about using AUROC as a comparison metric AU-
ROC measures the ability of the system to distinguish be-
tween bonafides and PAs across all thresholds. But PAD
systems, depending on the setup, may operate at either low
false detection rates (yielding low APCER) due to strict se-
curity requirements, or low false alarm rate (yielding low
BPCER) due to the goal of not increasing the system’s over-
all false rejection rate. AUROC does not emphasize perfor-
mance in these low-APCER or low-BPCER regions, poten-
tially obscuring vulnerabilities to sophisticated attacks or
method’s over-sensitiveness to potentially anomalous fea-
tures [15]. Furthermore, AUROC does not reflect the ac-
tual distribution of attack types or their varying levels of
difficulty, treating all errors equally regardless of the real-



world impact of different attacks. In highly imbalanced
PAD datasets, where attack samples may far outnumber
genuine ones or vice versa, AUROC can give a misleading
impression of overall performance. This concern has been
expressed in other fields as well [9, 1].

However, while AUROC does not necessarily articu-
late performance at extreme operating points, high AU-
ROC scores generally indicate implementation adaptability.
Further, our tasks explore relatively balanced class distri-
butions, avoiding pitfalls associated with class imbalance.
Considering the pros and cons of AUROC in assessing bio-
metric PAD performance, as well as the metric’s familiar-
ity in the biometric community, we opted to use it as our
winner-selection metric.
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